
Exploiting Interest Clustering for Efficient Event
Timestamping in Distributed Publish/Subscribe Systems

Roberto Baldoni, Silvia Bonomi, Marco Platania, Leonardo Querzoni
Dipartimento di Ingegneria Informatica Automatica e Gestionale “A. Ruberti”

Sapienza University of Rome
{baldoni|bonomi|platania|querzoni}@dis.uniroma1.it

In the last few years, cloud computing emerged as the
mainstream technology to provide on-demand resources as
a service over the Internet. Users can access these resources
anytime and anywhere, both from desktops or mobile plat-
forms. Amazon Web Services, Google Apps, Microsoft’s
Azure are just a few examples of cloud infrastructures that
provide services ranging from storage and application devel-
opment to high speed computing platforms.

A public cloud is typically a complex infrastructure com-
posed by one or more data centers, where a huge number
of services runs on a large amount of hardware. A typical
example is represented by eBay, whose internal architecture
has been divided into multiple disjoint subsystems: Users,
Items, Transactions, Products, Account, Feedback (vertical
division). Each subsystem is further divided into replicated
chunks (horizontal division) to parallelize the handling of
requests within these [8]. This segmentation was driven by
manageability, cost reduction and, most of all, scalability
purposes. Scalability, in fact, is considered an overarching
goal by cloud providers, and a key factor to achieve it is
decoupling : cloud nodes should quietly go about their work,
avoiding or, at least, reducing interactions, coordination and
synchronization [5].

Achieving scalability in cloud computing may come at the
cost of data consistency: with reference to the previously
described eBay infrastructure, each time an update is per-
formed on a chunk data, the same operation must be also
executed on all its replicas that are possibly spread over mul-
tiple machines in diverse datacenters in order to improve
fault tolerance and data availability. To prevent inconsis-
tencies, a typical approach is to update replicas by means
of a locking-based protocol. However, this introduces an
unsustainable load due to interactions and synchronization
among cloud nodes that may hamper the scalability of the
system. This is why major cloud providers are moving to-
wards a decentralized convergence behavior in which replicas
are maintained in transiently divergent states, from which
they will converge to a consistent state over time. This be-
havior is known as eventual consistency [9]: after an update

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LADIS ’12 Madeira, Portugal
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

completes on a chunk, the system does not guarantee that
subsequent accesses will return the updated value; there is
an inconsistency window that represents the time period
between an update and the moment in which any observer
will see the updated value. To this end, all operations per-
formed on chunk replicas must be serialized, i.e., a total
order among operations must be defined to provide to each
cloud node managing a replica the same ordered sequence
of operations.

Achieving scalability requires also asynchronous commu-
nication among cloud nodes. To this end, the publish/subscribe
paradigm represents an appealing solution due to its intrin-
sic decoupling properties in terms of time, space and syn-
chronization [7]. Several publish/subscribe systems, in fact,
are currently used to propagate updates across data cen-
ters worldwide, such as Google’s Thialfi [1] and Yahoo!’s
PNUTS [6]. In addition, this paradigm is also intrinsically
characterized by a one-way information flow, from publish-
ers to subscribers, so to avoid feedbacks that would create
throughput oscillations in the system [4].

A mechanism for enforcing ordered notifications in topic-
based publish/subscribe systems is presented in [2], and can
be used as a building block for the development of an even-
tual consistency algorithm. The proposed solution relies on
a set of Topic Managers (one per topic) interconnected in a
direct acyclic graph (DAG) that act as timestamp genera-
tors for events published in the system. Each time an event
is published on a topic T , the associated TM is contacted
to start a collaborative timestamp generation procedure that
involves the TMs of all topics T ′ till the DAG root, such that
there are at least two subscriptions including both T and
T ′. Each TM attaches to the timestamp a sequence number
that represents the number of events published on the topic
it manages. Interested subscribers receive the event and the
associated timestamp, that is used to infer the correct or-
der of that event. In this way, two subscribers that receive
the same two events can notify them in the same order (for
further details see [2]).

The collaborative timestamp generation procedure has tree
important characteristics:

• it generates per-topic ad-hoc timestamps that can be
used to order only those events that could possibly be
delivered out of order by distinct recipients. This so-
lution, with respect to a simple total order of all the
events injected in the system let us avoid the use of
consensus primitives. In fact, it is well known that,
even if consensus algorithms like Paxos are currently
employed in cloud infrastructures (e.g. Google Ap-

pEngine), they can perform unreliably over WAN links
[3] and developers are thus under huge pressure to use
them only if strictly necessary and for small-size groups
of processes [5];

• it decreases the number of rollback operations done on
replicated data with respect to a naive solution that
notifies events as soon they arrive and then correct
possible inconsistencies caused by a wrong delivery or-
der. Typical rollback algorithms, in fact, require either
the system stops processing updates or that live pro-
cesses refrain from receiving new events, bringing to
possible delays and discarded events that would pro-
duce unpredictable results to clients’ queries;

• it defines a one-way timestamping path for each event,
avoiding loops and feedbacks among TMs so to prevent
throughput oscillations.

Starting from [2], we are currently studying how this solu-
tion can be improved for a cloud environment, that typically
exhibits strong event production rates. Specifically, the goal
is to efficiently allocate TMs on physical machines in order
to reduce (i) network resource utilization, (ii) interaction
among cloud nodes, and (iii) latency overhead during times-
tamp construction. In [2], in fact, no specific rule is given to
allocate TMs on physical machines; as such, the generation
of a timestamp may involve several machines (potentially as
large the number of topics in the system), negatively affect-
ing notification latency and network resource usage.

To achieve this goal, a trivial solution is represented by
a single machine handling all TMs, that however would be
easily overwhelmed by timestamp requests. A more efficient
solution consists in a set of machines and a procedure that al-
locates TMs such that (i) each machine processes a bounded
number of requests per time unit, and (ii) the information
flow in input to the next machine in the DAG tends to zero.

Figure 1: Architectural view of the solution in [2]
with focus on the Ordering Module.

Figure 1 shows the internal architecture of the Ordering
Module. Each physical machine Mi that constitutes the
DAG has two input information flows: ΦMi

in from publishers

and Φ
Mi−1
res from the machine Mi−1. In addition, Mi has two

output information flows: ΦMi
out to subscribers and ΦMi

res to
machine Mi+1.

The objective of our study is to design a distributed al-
gorithm that maps TMs on physical machines so to mini-
mize ΦMi

res, with the constraint that each machine processes

a bounded number of events per time unit. The mapping
algorithm has to consider the interest of users (i.e., sub-
scribers) to optimize subscriptions clustering, and then to
assign a cluster to a single machine. In addition, the al-
gorithm must also respect the relation among topics intro-
duced by the DAG, so to preserve the one-way sequence of
messages during the timestamp generation.

The ideal mapping of TMs on physical machines would
generate ΦMi

in = ΦMi
out and ΦMi

res = 0, that is, all the traffic
coming from publishers is locally processed by a machine
Mi and then forwarded to subscribers, with no interaction
with other machines. This means that each machine would
work in isolation and that a single step would be required
to ensure ordered notifications.

Cloud computing requirements impose to revise classical
mechanisms to order events in a distributed systems like
timestamping in a non-trivial way. Such mechanisms have
to satisfy the CAP theorem and to avoid oscillation due to
unexpected network load on some component while keeping
short event delivery latency. This creates the condition for
an exciting research agenda on innovative and efficient dis-
tributed architectures and solutions to classical coordination
and communication distributed computing problems.

1. REFERENCES
[1] Atul Adya, Gregory Cooper, Daniel Myers, and

Michael Piatek. Thialfi: a client notification service for
internet-scale applications. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 129–142, New York, NY,
USA, 2011. ACM.

[2] R. Baldoni, S. Bonomi, M. Platania, and L. Querzoni.
Dynamic message ordering for topic-based
publish/subscribe systems. In Proceedings of the 26th
IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2012.

[3] Ryan Barrett. Transactions across datacenters. Google
I/O developer conference
http://www.google.com/events/io/2009/sessions/

TransactionsAcrossDatacenters.html, 2009.

[4] K. Birman. Rethinking multicast for massive-scale
platforms. In Distributed Computing Systems, 2009.
ICDCS’09. 29th IEEE International Conference on,
pages 1–1. IEEE, 2009.

[5] K. Birman, G. Chockler, and R. van Renesse. Toward a
cloud computing research agenda. SIGACT News,
40(2):68–80, 2009.

[6] B.F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB
Endowment, 1(2):1277–1288, 2008.

[7] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M.
Kermarrec. The many faces of publish/subscribe. ACM
Computing Surveys (CSUR), 35(2):114–131, 2003.

[8] R. Shoup. Architectural principles.
http://www.infoq.com/presentations/

shoup-ebay-architectural-principles.

[9] W. Vogels. Eventually consistent. Communications of
the ACM, 52(1):40–44, 2009.

