
Fast Total Ordering for Modern Data Centers
Extended Abstract

Amy Babay, Yair Amir
Department of Computer Science at Johns Hopkins University

{babay, yairamir}@cs.jhu.edu

I. INTRODUCTION

Data center applications rely on messaging services that
guarantee reliable, ordered message delivery for a wide range
of distributed coordination tasks. Totally ordered multicast,
which (informally) guarantees that all processes receive mes-
sages in exactly the same order, is particularly useful for
maintaining consistent distributed state in systems as diverse
as financial systems, distributed storage systems, cloud man-
agement, and big data analytics platforms.

Défago et al. survey the many existing total ordering proto-
cols and classify them based on their ordering mechanisms [1].
A particularly successful type of ordering protocol is the
class of token-based protocols. Token-based protocols typically
arrange the processes participating in the protocol in a logical
ring and order messages using a special control message
(called the token) that carries the information needed to order
new messages and is passed around the ring. Token-based
protocols are attractive because of their simplicity; a single
mechanism, the token, provides ordering, stability notification,
flow control, and fast failure detection.

Token-based protocols also achieved high network utiliza-
tion at the time they were introduced; for example, the Totem
Ring protocol [2] achieved about 75% network utilization on
10-megabit Ethernet using processors standard for 1995. The
simplicity, flexibility, and high performance of token-based
protocols led to their use in practical messaging services, in-
cluding the Spread toolkit [3], the Corosync cluster engine [4],
and the Appia communication framework [5].

When Fast Ethernet replaced 10-megabit Ethernet, network
speed increased by a factor of ten, and network span shrank
by the same factor (from 2000 to 200 meters) so that basic
network characteristics remained essentially the same. This
allowed the same protocols to continue to utilize the network
well. However, on networks common in today’s data centers,
these protocols do not reach the same network utilization as
in the past while maintaining reasonable latency.

1-gigabit and 10-gigabit networks could not use the same
techniques as Fast Ethernet to scale throughput (this would
have required a 1-gigabit network span to be limited to 20
meters). Moving to these faster networks required changing
the network architecture and adding buffering to switches. This
changed networking trade-offs. While throughput increased by
a factor of 10, 100, or more and latency was substantially
reduced, the decrease in latency was significantly lower than
the corresponding improvement in throughput.

This change in the trade-off between a network’s through-
put and its latency alters the performance profile of token-
based protocols, as these protocols are particularly sensitive
to latency. The ability to multicast new messages rotates with

the token, so no new messages can be sent from the time that
one participant finishes multicasting to the time that the next
participant receives the token, processes it, and begins sending
new messages.

The gap between the performance of existing protocols and
the performance that is possible in modern environments led
us to design the Accelerated Ring protocol. The Accelerated
Ring protocol compensates for, and even benefits from, the
switch buffering that limits the network utilization of other
token-based protocols.

II. PROTOCOL OVERVIEW

Similarly to other token-based protocols, the Accelerated
Ring protocol passes a token around a logical ring, and a
participant is able to begin multicasting upon receiving the
token. The key innovation is that, unlike in other protocols,
a participant may release the token before it finishes multi-
casting. Each participant updates the token to reflect all the
messages it will multicast during the current rotation of the
token around the ring before beginning to multicast. It can
then pass the token to the next participant in the ring at
any point during the time it is multicasting. Since the token
includes all the information the next participant needs, the next
participant can begin multicasting as soon as it receives the
token, even if its predecessor on the ring has not yet completed
its multicasting for the current token rotation.

However, the fact that the token can reflect messages that
have not yet been sent requires careful handling of other
aspects of the protocol. For example, messages cannot be
requested for retransmission as soon as they are reflected
in the token, since this may result in many unnecessary
retransmissions.

The ability to send the token before all multicasts are
completed allows the token to circulate the ring faster, reduces
or eliminates periods in which no participant is sending, and
allows for controlled parallelism in sending. As a result, the
Accelerated Ring protocol is able to simultaneously provide
higher throughput and lower latency than a standard token-
based protocol.

Subtly different total ordering semantics exist and the
Accelerated Ring protocol offers multiple service levels. Here
we consider Agreed delivery, which guarantees that messages
delivered within a particular membership are delivered in the
same total order by all members of that membership. The
total order respects causality. A formal specification of Agreed
delivery is given in [2].

III. EVALUATION

We evaluate the performance profile of the Accelerated
Ring protocol and compare it to the performance of the original



Fig. 1. Agreed delivery latency vs. throughput, 1-gigabit

Totem Ring protocol [2]. We evaluate both protocols in library-
based and daemon-based prototype implementations as well as
in complete production implementations in Spread. We ran the
system at different throughput levels and measured the average
latency to deliver a message at each throughput. Each server
sent the same number of messages at a fixed rate and received
all the messages sent by all the servers.

All benchmarks use eight Dell PowerEdge R210 II servers,
with Intel Xeon E3-1270v2 3.50 GHz processors and 16 GB of
memory. The servers were connected using a 1-gigabit Catalyst
2960 Cisco switch and a 10-gigabit 7100T Arista switch. All
data messages contained a 1350 byte payload. This size allows
the entire message to fit in a single IP packet with a standard
1500 byte MTU with sufficient space for protocol headers.

A. 1-gigabit Experiments

Figure 1 shows the difference between the original Ring
and the Accelerated Ring protocols. When Spread uses the
original protocol, its latency for Agreed delivery is at least 400
microseconds, even for the lowest throughput level tested (100
Mbps). In contrast, with the Accelerated Ring protocol, Spread
is able to reach 400 Mbps throughput with latency below 400
microseconds. At 900 Mbps, Spread’s latency is under 1.2
milliseconds using the accelerated protocol, which is about
the same as the latency for the original protocol at 400 Mbps.
With the original protocol, Spread supports up to 500 Mbps,
with latency around 1.3 milliseconds, before latency begins to
climb rapidly. The accelerated protocol is able to support 800
Mbps with latency around 720 microseconds, simultaneously
improving throughput by 60% and latency by over 45%.

The accelerated protocol also improves maximum through-
put compared to the original protocol. Using the accelerated
protocol, Spread is able to reach over 920 Mbps. Since we only
measure clean application data, and Spread adds substantial
headers, this is practically saturating the 1-gigabit network.

B. 10-gigabit Experiments

Figure 2 shows the benefit of the Accelerated Ring protocol
on a 10-gigabit network. Using the original protocol, Spread
can provide throughput up to about 1 Gbps before the protocol
starts to reach its limits and latency climbs. Its average latency
at this throughput is 385 microseconds. Using the accelerated
protocol, Spread can provide 1.2 Gbps throughput with an
average latency of about 310 microseconds, for a simultaneous
improvement of 20% in both throughput and latency. The

Fig. 2. Agreed delivery latency vs. throughput, 10-gigabit

maximum throughput Spread reaches with latency under 1
millisecond using the original protocol is 1.6 Gbps, but using
the accelerated protocol, Spread is able to reach 2 Gbps with
similar latency, for a 25% improvement in throughput.

Unlike on 1-gigabit networks, on 10-gigabit networks, pro-
cessing is slow relative to the network. Therefore, the differing
overheads of the different implementations have a significant
impact on performance. While Spread can support 1.2 Gbps
throughput with average latency around 310 microseconds
using the accelerated protocol, the daemon-based prototype
supports up to 2.9 Gbps with the same latency, and the library-
based prototype reaches 3.5 Gbps at that latency.

Because processing is a bottleneck for Spread on 10-
gigabit networks, we consider the prototype implementations
to see the full power of the protocol. For the daemon-based
prototype, the original protocol supports 2 Gbps with latency
around 390 microseconds. The accelerated protocol supports
2.8 Gbps throughput with latency around 265 microseconds,
for a simultaneous improvement of 40% in throughput and
over 30% in latency.

IV. CONCLUSION

The Accelerated Ring protocol is implemented in open-
source prototypes suitable for research. A production imple-
mentation has been adopted as the default protocol for local
area networks and data center environments in Spread.

ACKNOWLEDGMENT

This work was supported in part by DARPA grant
N660001-1-2-4014. Its contents are solely the responsibility of
the authors and do not represent the official view of DARPA
or the Department of Defense.

REFERENCES

[1] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast
algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36, no. 4,
pp. 372–421, Dec. 2004.

[2] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and
P. Ciarfella, “The totem single-ring ordering and membership protocol,”
ACM Trans. Comput. Syst., vol. 13, no. 4, pp. 311–342, Nov. 1995.

[3] Spread Concepts LLC, “The Spread Toolkit,” http://www.spread.org,
retrieved March 23, 2015.

[4] “The Corosync cluster engine,” http://corosync.github.io/corosync, re-
trieved March 23, 2015.

[5] “Appia communication framework,” http://appia.di.fc.ul.pt, retrieved
March 23, 2015.


